Zhangzhe's Blog

The projection of my life.

0%

Selective Kernel Networks

URL

https://arxiv.org/pdf/1903.06586.pdf

TL;DR

  • SKNet 给 N 个不同感受野分支的 feature 通道赋予权重,结合了 Attention to channelselect kernel

SKNet网络结构

sk1.png

数学表达

XRH×W×CF~U~RH×W×CX\in\mathbb R^{H'\times W' \times C'} \overset{\tilde F}{\longrightarrow} \tilde U \in \mathbb R^{H\times W\times C}
XRH×W×CF^U^RH×W×CX\in\mathbb R^{H'\times W' \times C'} \overset{\hat F}{\longrightarrow} \hat U \in \mathbb R^{H\times W\times C}
U=U~+U^U=\tilde U + \hat U
sc=Fgp(Uc)=1H×Wi=1Hj=1WUc(i,j)s_c = F_{gp}(U_c) = \frac{1}{H\times W}\sum_{i=1}^H\sum_{j=1}^W U_c(i, j)
z=Ffc(s)=δ(β(Ws)),    WRd×C,    d=max(Cr,L)z = F_{fc}(s) = \delta(\beta (Ws)),\ \ \ \ W\in\mathbb R^{d\times C},\ \ \ \ d = max(\frac{C}{r}, L)
ac=eAczeAcz+eBcz,  bc=eBczeAcz+eBcz,    Ac,BcR1×da_c = \frac{e^{A_cz}}{e^{A_cz} + e^{B_cz}},\ \ b_c = \frac{e^{B_cz}}{e^{A_cz} + e^{B_cz}},\ \ \ \ A_c,B_c\in\mathbb R^{1\times d}
Vc=ac.U~c+bc.U^c,    VcRH×WV_c = a_c . \tilde U_c + b_c . \hat U_c,\ \ \ \ V_c\in\mathbb R^{H\times W}

SKNet实验结果

  • ImageNet
    sk2
    sk3
    sk4
  • other
    sk5

Thoughts

  • SENetSKNet 属于 Attention to channelULSAM 属于 Attention to HW,两个合起来是否可以替代 Non-local——在 THW上的 Attention