Zhangzhe's Blog

The projection of my life.

0%

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

URL

TL;DR

  • 本文提出一种应用于视觉任务的 Transformer

Algorithm

Architecture

vit.gif

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers


def pair(t):
return t if isinstance(t, tuple) else (t, t)


# classes


class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn

def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.0):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout),
)

def forward(self, x):
return self.net(x)


class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)

self.heads = heads
self.scale = dim_head**-0.5

self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

self.to_out = (
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
if project_out
else nn.Identity()
)

def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)

out = torch.matmul(attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)


class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PreNorm(
dim,
Attention(
dim, heads=heads, dim_head=dim_head, dropout=dropout
),
),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
]
)
)

def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x


class ViT(nn.Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
pool="cls",
channels=3,
dim_head=64,
dropout=0.0,
emb_dropout=0.0
):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert (
image_height % patch_height == 0 and image_width % patch_width == 0
), "Image dimensions must be divisible by the patch size."

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {
"cls",
"mean",
}, "pool type must be either cls (cls token) or mean (mean pooling)"

self.to_patch_embedding = nn.Sequential(
Rearrange(
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
p1=patch_height,
p2=patch_width,
),
nn.Linear(patch_dim, dim),
)

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

self.pool = pool
self.to_latent = nn.Identity()

self.mlp_head = nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes))

def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape

cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, : (n + 1)]
x = self.dropout(x)

x = self.transformer(x)

x = x.mean(dim=1) if self.pool == "mean" else x[:, 0]

x = self.to_latent(x)
return self.mlp_head(x)


vit = ViT(
image_size=100,
patch_size=10,
num_classes=10,
dim=128,
depth=12,
heads=8,
mlp_dim=256,
)
img = torch.randn(2, 3, 100, 100)
out = vit(img)
print(out.shape) # [2, 10]

Thought

  • 一个优雅的网络结构,就该像 ViT 这样,用一张动图 + 一段不长的代码完美表示。显然 Swin Transformer 不够优雅…