1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
| import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange
def pair(t): return t if isinstance(t, tuple) else (t, t)
class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.0): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head**-0.5 self.attend = nn.Softmax(dim=-1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) self.to_out = ( nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout)) if project_out else nn.Identity() ) def forward(self, x): qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, "b h n d -> b n (h d)") return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PreNorm( dim, Attention( dim, heads=heads, dim_head=dim_head, dropout=dropout ), ), PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), ] ) ) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool="cls", channels=3, dim_head=64, dropout=0.0, emb_dropout=0.0 ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert ( image_height % patch_height == 0 and image_width % patch_width == 0 ), "Image dimensions must be divisible by the patch size." num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in { "cls", "mean", }, "pool type must be either cls (cls token) or mean (mean pooling)" self.to_patch_embedding = nn.Sequential( Rearrange( "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch_height, p2=patch_width, ), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes)) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, : (n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim=1) if self.pool == "mean" else x[:, 0] x = self.to_latent(x) return self.mlp_head(x) vit = ViT( image_size=100, patch_size=10, num_classes=10, dim=128, depth=12, heads=8, mlp_dim=256, ) img = torch.randn(2, 3, 100, 100) out = vit(img) print(out.shape)
|