1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
| import math import torch from torch.optim import Optimizer import torch.distributed as dist from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled class AdaLomo(Optimizer): """ 一个自定义的优化器类AdaLomo,用于在分布式训练中的梯度更新。 该类实现两个梯度更新函数 :meth:`fuse_update` 和 :meth:`fuse_update_zero3`,分别用于非ZeRO和ZeRO模式下的梯度更新。 :param model: 待优化的模型 :param lr: 学习率,默认值为1e-3 :param eps: 正则化系数。eps[0]防止梯度平方太小,eps[1]用于在根据参数的RMS放缩学习率时防止步长太大 :param clip_threshold: 归一化update矩阵时的阈值 :param decay_rate: 梯度平方移动平均的衰减率 :param clip_grad_norm: 梯度裁剪的范数阈值 .. note:: clip_grad_norm须为正数 :param clip_grad_value: 梯度裁剪的值域阈值 :param weight_decay: 权重衰减系数,默认值为0.0 :param loss_scale: 损失缩放系数,可以用来提高训练精度,但是太大可能会导致nan """ def __init__( self, model, lr=1e-3, loss_scale=2 ** 10, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, clip_grad_norm=None, clip_grad_value=None, weight_decay=0.0, ): self.model = model self.lr = lr self.clip_grad_norm = clip_grad_norm self.clip_grad_value = clip_grad_value self.weight_decay = weight_decay self.loss_scale = loss_scale if self.weight_decay > 0.0: self.do_weight_decay = True else: self.do_weight_decay = False self.eps = eps self.step_num = 0 self.decay_rate = decay_rate self.clip_threshold = clip_threshold if self.clip_grad_norm is not None and self.clip_grad_norm <= 0: raise ValueError( f"clip_grad_norm should be positive, got {self.clip_grad_norm}." ) self.gather_norm = False self.grad_norms = [] self.clip_coef = None self.zero3_enabled = is_deepspeed_zero3_enabled() if self.zero3_enabled: self.grad_func = self.fuse_update_zero3() else: self.grad_func = self.fuse_update() self.exp_avg_sq = {} self.exp_avg_sq_row = {} self.exp_avg_sq_col = {} for n, p in self.model.named_parameters(): if self.zero3_enabled: if len(p.ds_shape) == 1: self.exp_avg_sq[n] = torch.zeros( p.ds_shape[0], dtype=torch.float32 ).cuda() else: self.exp_avg_sq_row[n] = torch.zeros( p.ds_shape[0], dtype=torch.float32 ).cuda() self.exp_avg_sq_col[n] = torch.zeros( p.ds_shape[1], dtype=torch.float32 ).cuda() else: if len(p.data.shape) == 1: self.exp_avg_sq[n] = torch.zeros( p.data.shape[0], dtype=torch.float32 ).cuda() else: self.exp_avg_sq_row[n] = torch.zeros( p.data.shape[0], dtype=torch.float32 ).cuda() self.exp_avg_sq_col[n] = torch.zeros( p.data.shape[1], dtype=torch.float32 ).cuda() if p.requires_grad: p.register_hook(self.grad_func) defaults = dict( lr=lr, eps=eps, weight_decay=weight_decay, clip_grad_norm=clip_grad_norm, clip_grad_value=clip_grad_value, ) super(AdaLomo, self).__init__(self.model.parameters(), defaults) @staticmethod def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): r_factor = ( (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)) .rsqrt_() .unsqueeze(-1) ) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) @staticmethod def _rms(tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) def fuse_update(self): """ 在非ZeRO模式下更新模型参数的梯度。 :return: func,一个闭包函数,用于更新模型参数的梯度 """ def func(x): """ 闭包函数,用于更新模型参数的梯度。 """ with torch.no_grad(): for n, p in self.model.named_parameters(): if p.requires_grad and p.grad is not None: grad_fp32 = p.grad.to(torch.float32) p.grad = None if self.loss_scale: grad_fp32.div_(self.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: if ( self.clip_grad_value is not None and self.clip_grad_value > 0 ): grad_fp32.clamp_( min=-self.clip_grad_value, max=self.clip_grad_value ) if ( self.clip_grad_norm is not None and self.clip_grad_norm > 0 and self.clip_coef is not None ): grad_fp32.mul_(self.clip_coef) beta2t = 1.0 - math.pow(self.step_num, self.decay_rate) update = (grad_fp32 ** 2) + self.eps[0] if len(p.data.shape) > 1: self.exp_avg_sq_row[n].mul_(beta2t).add_( update.mean(dim=-1), alpha=1.0 - beta2t ) self.exp_avg_sq_col[n].mul_(beta2t).add_( update.mean(dim=-2), alpha=1.0 - beta2t ) update = self._approx_sq_grad( self.exp_avg_sq_row[n], self.exp_avg_sq_col[n] ) update.mul_(grad_fp32) else: self.exp_avg_sq[n].mul_(beta2t).add_( update, alpha=1.0 - beta2t ) update = self.exp_avg_sq[n].rsqrt().mul_(grad_fp32) update.div_( (self._rms(update) / self.clip_threshold).clamp_( min=1.0 ) ) p_fp32 = p.data.to(torch.float32) p_rms = torch.norm(p_fp32, 2.0) / math.sqrt(p.numel()) lr = self.lr param_scale = max(self.eps[1], p_rms) lr = lr * param_scale if self.do_weight_decay: p_fp32.mul_(1.0 - lr * self.weight_decay) p_fp32.add_(update, alpha=-lr) p.data.copy_(p_fp32) return x return func def fuse_update_zero3(self): """ 在ZeRO模式下更新模型参数的梯度。 :return: func,一个闭包函数,用于更新模型参数的梯度。 """ def func(x): with torch.no_grad(): for n, p in self.model.named_parameters(): if p.grad is not None: torch.distributed.all_reduce( p.grad, op=torch.distributed.ReduceOp.AVG, async_op=False ) grad_fp32 = p.grad.to(torch.float32) p.grad = None if self.loss_scale: grad_fp32.div_(self.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: partition_size = p.ds_tensor.numel() start = partition_size * self.dp_rank end = min(start + partition_size, grad_fp32.numel()) if self.clip_grad_value is not None: grad_fp32.clamp_( min=-self.clip_grad_value, max=self.clip_grad_value ) if ( self.clip_grad_norm is not None and self.clip_grad_norm > 0 and self.clip_coef is not None ): grad_fp32.mul_(self.clip_coef) beta2t = 1.0 - math.pow(self.step_num, self.decay_rate) update = (grad_fp32 ** 2) + self.eps[0] if len(p.ds_shape) > 1: self.exp_avg_sq_row[n].mul_(beta2t).add_( update.mean(dim=-1), alpha=1.0 - beta2t ) self.exp_avg_sq_col[n].mul_(beta2t).add_( update.mean(dim=-2), alpha=1.0 - beta2t ) update = self._approx_sq_grad( self.exp_avg_sq_row[n], self.exp_avg_sq_col[n] ) update.mul_(grad_fp32) else: self.exp_avg_sq[n].mul_(beta2t).add_( update, alpha=1.0 - beta2t ) update = self.exp_avg_sq[n].rsqrt().mul_(grad_fp32) update.div_( (self._rms(update) / self.clip_threshold).clamp_( min=1.0 ) ) one_dim_update = update.view(-1) partitioned_update = one_dim_update.narrow( 0, start, end - start ) param_fp32 = p.ds_tensor.to(torch.float32) partitioned_p = param_fp32.narrow(0, 0, end - start) p_rms = torch.norm(partitioned_p, 2.0) ** 2 dist.all_reduce(p_rms, op=torch.distributed.ReduceOp.SUM) p_rms = (p_rms / p.ds_numel).sqrt() lr = self.lr param_scale = max(self.eps[1], p_rms) lr = lr * param_scale if self.do_weight_decay: partitioned_p.mul_(1.0 - lr * self.weight_decay) partitioned_p.add_(partitioned_update, alpha=-lr) p.ds_tensor[: end - start] = partitioned_p return x return func def fused_backward(self, loss, lr): """ 执行一步反向传播并更新模型的梯度。 :param loss: 模型的loss值 :param lr: 学习率 """ self.lr = lr if self.loss_scale: loss = loss * self.loss_scale self.step_num += 1 loss.backward() self.grad_func(0) def grad_norm(self, loss): """ 计算梯度的范数。 :param loss: 模型的loss值 """ self.gather_norm = True self.grad_norms = [] if self.loss_scale: loss = loss * self.loss_scale loss.backward(retain_graph=True) self.grad_func(0) with torch.no_grad(): self.grad_norms = torch.stack(self.grad_norms) total_norm = torch.norm(self.grad_norms, 2.0) self.clip_coef = float(self.clip_grad_norm) / (total_norm + 1e-6) self.clip_coef = torch.clamp(self.clip_coef, max=1.0) self.gather_norm = False
|