| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 
 | import torchfrom torch import nn
 from einops import rearrange, repeat
 from einops.layers.torch import Rearrange
 
 def pair(t):
 return t if isinstance(t, tuple) else (t, t)
 
 class PreNorm(nn.Module):
 def __init__(self, dim, fn):
 super().__init__()
 self.norm = nn.LayerNorm(dim)
 self.fn = fn
 def forward(self, x, **kwargs):
 return self.fn(self.norm(x), **kwargs)
 class FeedForward(nn.Module):
 def __init__(self, dim, hidden_dim, dropout=0.0):
 super().__init__()
 self.net = nn.Sequential(
 nn.Linear(dim, hidden_dim),
 nn.GELU(),
 nn.Dropout(dropout),
 nn.Linear(hidden_dim, dim),
 nn.Dropout(dropout),
 )
 def forward(self, x):
 return self.net(x)
 class Attention(nn.Module):
 def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
 super().__init__()
 inner_dim = dim_head * heads
 project_out = not (heads == 1 and dim_head == dim)
 self.heads = heads
 self.scale = dim_head**-0.5
 self.attend = nn.Softmax(dim=-1)
 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
 self.to_out = (
 nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
 if project_out
 else nn.Identity()
 )
 def forward(self, x):
 qkv = self.to_qkv(x).chunk(3, dim=-1)
 q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
 dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
 attn = self.attend(dots)
 out = torch.matmul(attn, v)
 out = rearrange(out, "b h n d -> b n (h d)")
 return self.to_out(out)
 class Transformer(nn.Module):
 def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0):
 super().__init__()
 self.layers = nn.ModuleList([])
 for _ in range(depth):
 self.layers.append(
 nn.ModuleList(
 [
 PreNorm(
 dim,
 Attention(
 dim, heads=heads, dim_head=dim_head, dropout=dropout
 ),
 ),
 PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
 ]
 )
 )
 def forward(self, x):
 for attn, ff in self.layers:
 x = attn(x) + x
 x = ff(x) + x
 return x
 class ViT(nn.Module):
 def __init__(
 self,
 *,
 image_size,
 patch_size,
 num_classes,
 dim,
 depth,
 heads,
 mlp_dim,
 pool="cls",
 channels=3,
 dim_head=64,
 dropout=0.0,
 emb_dropout=0.0
 ):
 super().__init__()
 image_height, image_width = pair(image_size)
 patch_height, patch_width = pair(patch_size)
 assert (
 image_height % patch_height == 0 and image_width % patch_width == 0
 ), "Image dimensions must be divisible by the patch size."
 num_patches = (image_height // patch_height) * (image_width // patch_width)
 patch_dim = channels * patch_height * patch_width
 assert pool in {
 "cls",
 "mean",
 }, "pool type must be either cls (cls token) or mean (mean pooling)"
 self.to_patch_embedding = nn.Sequential(
 Rearrange(
 "b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
 p1=patch_height,
 p2=patch_width,
 ),
 nn.Linear(patch_dim, dim),
 )
 self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
 self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
 self.dropout = nn.Dropout(emb_dropout)
 self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
 self.pool = pool
 self.to_latent = nn.Identity()
 self.mlp_head = nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes))
 def forward(self, img):
 x = self.to_patch_embedding(img)
 b, n, _ = x.shape
 cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b)
 x = torch.cat((cls_tokens, x), dim=1)
 x += self.pos_embedding[:, : (n + 1)]
 x = self.dropout(x)
 x = self.transformer(x)
 x = x.mean(dim=1) if self.pool == "mean" else x[:, 0]
 x = self.to_latent(x)
 return self.mlp_head(x)
 vit = ViT(
 image_size=100,
 patch_size=10,
 num_classes=10,
 dim=128,
 depth=12,
 heads=8,
 mlp_dim=256,
 )
 img = torch.randn(2, 3, 100, 100)
 out = vit(img)
 print(out.shape)
 
 |